action. Systems, controls, and associated monitoring and warning means must be designed to minimize crew errors which could create additional hazards.

- (d) Compliance with the requirements of paragraph (b)(2) of this section must be shown by analysis and, where necessary, by appropriate ground, flight, or simulator tests. The analysis must consider—
- (1) Possible modes of failure, including malfunctions and damage from external sources;
- (2) The probability of multiple failures and undetected failures;
- (3) The resulting effects on the rotorcraft and occupants, considering the stage of flight and operating conditions; and
- (4) The crew warning cues, corrective action required, and the capability of detecting faults.
- (e) For Category A rotorcraft, each installation whose functioning is required by this subchapter and which requires a power supply is an "essential load" on the power supply. The power sources and the system must be able to supply the following power loads in probable operating combinations and for probable durations:
- (1) Loads connected to the system with the system functioning normally.
- (2) Essential loads, after failure of any one prime mover, power converter, or energy storage device.
 - (3) Essential loads, after failure of-
- (i) Any one engine, on rotorcraft with two engines; and
- (ii) Any two engines, on rotorcraft with three or more engines.
- (f) In determining compliance with paragraphs (e)(2) and (3) of this section, the power loads may be assumed to be reduced under a monitoring procedure consistent with safety in the kinds of operations authorized. Loads not required for controlled flight need not be considered for the two-engine-inoperative condition on rotorcraft with three or more engines.
- (g) In showing compliance with paragraphs (a) and (b) of this section with regard to the electrical system and to equipment design and installation, critical environmental conditions must be considered. For electrical generation, distribution, and utilization

equipment required by or used in complying with this subchapter, except equipment covered by Technical Standard Orders containing environmental test procedures, the ability to provide continuous, safe service under foreseeable environmental conditions may be shown by environmental tests, design analysis, or reference to previous comparable service experience on other aircraft.

(Secs. 313(a), 601, 603, 604, and 605 of the Federal Aviation Act of 1958 (49 U.S.C. 1354(a), 1421, 1423, 1424, and 1425); and sec. 6(c), Dept. of Transportation Act (49 U.S.C. 1655(c)))

[Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–14, 42 FR 36972, July 18, 1977; Amdt. 29–24, 49 FR 44438, Nov. 6, 1984; Amdt. 29–40, 61 FR 21908, May 10, 1996; Amdt. 29–53, 76 FR 33136, June 8, 2011]

§ 29.1316 Electrical and electronic system lightning protection.

- (a) Each electrical and electronic system that performs a function, for which failure would prevent the continued safe flight and landing of the rotor-craft, must be designed and installed so that—
- (1) The function is not adversely affected during and after the time the rotorcraft is exposed to lightning; and
- (2) The system automatically recovers normal operation of that function in a timely manner after the rotorcraft is exposed to lightning.
- (b) Each electrical and electronic system that performs a function, for which failure would reduce the capability of the rotorcraft or the ability of the flightcrew to respond to an adverse operating condition, must be designed and installed so that the function recovers normal operation in a timely manner after the rotorcraft is exposed to lightning.

[Doc. No. FAA-2010-0224, Amdt. 29-53, 76 FR 33136, June 8, 2011]

§ 29.1317 High-intensity Radiated Fields (HIRF) Protection.

(a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe flight and landing of the rotorcraft must be designed and installed so that—